Stability properties of graph neural networks



Graph neural networks (GNNs) have emerged as a powerful tool for nonlinear processing of graph signals, exhibiting success in recommender systems, power outage prediction, and motion planning, among others. GNNs consist of a cascade of layers, each of which applies a graph convolution, followed by a pointwise nonlinearity. In this work, we study the impact that changes in the underlying topology have on the output of the GNN. First, we show that GNNs are permutation equivariant, which implies that they effectively exploit internal symmetries of the underlying topology. Then, we prove that graph convolutions with integral Lipschitz filters, in combination with the frequency mixing effect of the corresponding nonlinearities, yields an architecture that is both stable to small changes in the underlying topology, and discriminative of information located at high frequencies. These are two properties that cannot …


Fernando Gama
Joan Bruna
Alejandro Ribeiro