A note on learning algorithms for quadratic assignment with graph neural networks



Many inverse problems are formulated as optimization problems over certain appropriate input distributions. Recently, there has been a growing interest in understanding the computational hardness of these optimization problems, not only in the worst case, but in an average-complexity sense under this same input distribution. In this note, we are interested in studying another aspect of hardness, related to the ability to learn how to solve a problem by simply observing a collection of previously solved instances. These are used to supervise the training of an appropriate predictive model that parametrizes a broad class of algorithms, with the hope that the resulting “algorithm” will provide good accuracy-complexity tradeoffs in the average sense. We illustrate this setup on the Quadratic Assignment Problem, a fundamental problem in Network Science. We observe that data-driven models based on Graph Neural Networks offer intriguingly good performance, even in regimes where standard relaxation based techniques appear to suffer.


Alex Nowak
Soledad Villar
Afonso S. Bandeira
Joan Bruna