Online Learning for Offroad Robots: Using Spatial Label Propagation to Learn Long-Range Traversability



We present a solution to the problem of long-range obstacle/path recognition in autonomous robots. The system uses sparse traversability information from a stereo module to train a classifier online. The trained classifier can then predict the traversability of the entire scene. A distance-normalized image pyramid makes it possible to efficiently train on each frame seen by the robot, using large windows that contain contextual information as well as shape, color, and texture. Traversability labels are initially obtained for each target using a stereo module, then propagated to other views of the same target using temporal and spatial concurrences, thus training the classifier to be viewinvariant. A ring buffer simulates short-term memory and ensures that the discriminative learning is balanced and consistent. This long-range obstacle detection system sees obstacles and paths at 30-40 meters, far beyond the maximum stereo range of 12 meters, and adapts very quickly to new environments. Experiments were run on the LAGR robot platform.


Raia Hadsell
Pierre Sermanet
Jan Ben
Ayse Naz Erkan
Jeff Han
Beat Flepp
Urs Muller
Yann LeCun